wjec cbac

GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - S2 0984-01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Ques	Solution	Mark	Notes
1(a)	E(X) = 2.0, E(Y) = 1.6	B1	si
	$\mathbf{E}(W) = \mathbf{E}(X)\mathbf{E}(Y)$	M1	
	= 3.2	A1	
	Var(X) = 1.2, Var(Y) = 1.28	B1 M1A1	S1
	$E(X^{2}) = Var(X) + [E(X)]^{2} = 5.2$	MIAI	
	$E(Y^{2}) = \operatorname{Var}(Y) + [E(Y)]^{2} = 3.84$	A1	
	$Var(W) = E(X^{2})E(Y^{2}) - [E(X)E(Y)]^{2}$	М1	Allow
	= 9.73	A1	
(b)	$P(W = 0) = P\{(X = 0) \cup (Y = 0)\}$	M1	P(W=0) = 1 - P(X>0)P(Y>0)
	$= P(X = 0) + P(Y = 0) - P\{(X = 0) \cap (Y = 0)\}$	m1	=1 - (1 - P(X = 0))(1 - P(Y = 0))
	$= 0.6^5 + 0.8^8 - 0.6^5 \times 0.8^8$	A1	$= 1 - (1 - 0.6^5)(1 - 0.8^8)$
	= 0.232	A1	= 0.232
2	Under H_0 , the number, X, of breakdowns in 100		
	days is Poi(80) which is approx N(80,80)	B1B1	
	$z = \frac{64.5 - 80}{2}$	M1A1	Award M1A0 for an incorrect or
	$\sqrt{80}$		for the following marks
	=-1.73	A1	$64 \rightarrow z = -1.79 \rightarrow p$ -value = 0.0367
	p-value = 0.0418	AI	$63.5 \rightarrow z = -1.84 \rightarrow p$ -value = 0.0329
	number of breakdowns per day has been reduced	A1	
	number of breakdowns per day has been reduced.		FT the <i>p</i> -value
3 (a)	$90^{\text{th}} \text{ percentile} = \mu + 1.282\sigma$	M1	
	= 128	A1	
	Let $X =$ weight of an apple, $Y =$ weight of a pear		
(b)	Let S denote the sum of the weights of 10 apples		
	Then $E(S) = 1100$	B1	
	$Var(S) = 10 \times 14^2$	M1	
	= 1960	A1	
	$z = \frac{1000 - 1100}{\sqrt{2}}$		
	√1960 ()	m1	
	=(-)2.26		
(c)	Prob = 0.01191	AI M1	
	Let $U = X_1 + X_2 + X_3 - Y_1 - Y_2$		si, condone incorrect notation
	$E(U) = 3 \times 110 - 2 \times 160 = 10$	A1	
	$Var(U) = 3 \times 14^{2} + 2 \times 16^{2} = 1100$	M1A1	
	we require $r(U > 0)$		
	$z = \frac{0-10}{\sqrt{1100}}$	m1	
	$\sqrt{1100}$	A1	
	= (-) 0.30 Prob = 0.6179	A 1	
	1100 - 0.0172	AI	

S2 - June 2017 - Markscheme

Ques	Solution	Mark	Notes
4(a)	Let <i>x</i> , <i>y</i> denote distance travelled by models A,B		
	respectively.		
	$\bar{x} = 166.9; \bar{y} = 163.9$	B1 B1	
	Standard error = $\sqrt{\frac{2 \times 2.5^2}{8}}$ (=1.25)	M1A1	
	95% confidence limits are		
	$166.9 - 163.9 \pm 1.96 \times 1.25$	M1A1	
	giving [0.55,5.45]	A1	
(b)			
()	The lower end of the interval will be 0 if		
	1.25z = 3	M1	ET their SE and \overline{x} \overline{y}
	z = 2.4	A1	(for the first two marks only)
	Tabular value = $0.008(2)$ cao	A1	(for the first two marks only)
	Smallest confidence level = 98.4%	A1	
	$U_{2} = U_{2} = U_{2} = D(50, 0.75)$	D1	
5(a)(1)	Under H_0 , X is B(50,0.75) Since $n > 0.5$, we consider X'which is B(50.0.25)	BI M1	S1
	Since $p > 0.5$, we consider A which is $D(50,0.25)$ P(Y < 21) = P(Y' > 10) = 0.0287		
	P(X > AA) = P(X' < C) = 0.0207		
	$P(X \ge 44) = P(X \le 0) = 0.0194$		
	Significance level = 0.0481		
(ii)	If $\mathbf{n} = 0.5$		
	$P(A \text{ coept } H_1) - P(32 \le Y \le 43)$	M1	
	-1 = 0.9675 = 0.0325	A1	
	- 1 - 0.9075 - 0.0525		
(b)(i)	Let Y now denote the number of heads so that		Award M1A0 for incorrect or no
	under H ₀ <i>Y</i> is B(200.0.75) \simeq N(150.37.5)	B1	continuity correction but FT for
	139.5–150		following marks
	$z = \frac{1}{\sqrt{275}}$	M1A1	$139 \rightarrow z = -1.80 \rightarrow p$ -value = 0.0359
	$\sqrt{37.3}$	A 1	$138.5 \rightarrow z = -1.88 \rightarrow p$ -value = 0.0301
	-(-)1.71 Tabular value - 0.0436	A1	Penultimate A1 for doubling line
	$n_{\rm value} = 0.0430$	A1	above
(;;)	There is insufficient evidence to reject H_0	A1	FT the p-value
(11)			

Ques	Solution	Mark	Notes
6(a)(i)	$f(x) = \frac{1}{b-a}, a \le x \le b$ = 0 otherwise	B1	Allow <
(ii)	$E(X^2) = \frac{1}{b-a} \int x^2 \mathrm{d}x$	M1	
	$= \frac{1}{b-a} \left[\frac{x^3}{3} \right]_a^b$	A1	Condone omission of limits
	$=\frac{b^3-a^3}{3(b-a)}$	A1	
	$=\frac{(b-a)(b^{2}+ab+a^{2})}{3(b-a)}$	A1	
(:::)	$=\frac{(b^2+ab+a^2)}{3}$		
(11)	$Var(X) = E(X^2) - (E(X))^2$	M1	
	$=\frac{b^{2}+ab+a^{2}}{3}-\left(\frac{a^{2}+2ab+b^{2}}{4}\right)$	A1	
	$=\frac{4b^2+4ab+4a^2-3a^2-6ab-3b^2}{12}$	A1	Convincing
	$=\frac{(b-a)^2}{12}$		
(b)(i)	$E(Y) = \frac{1}{b-a} \int \frac{1}{x} dx$	M1	
	$=\frac{1}{b-a}\left[\ln x\right]_a^b$	A1	Condone omission of limits
	$=\frac{\ln b - \ln a}{b - a}$	A1	
(ii)	$P(Y \le y) = P\left(\frac{1}{X} \le y\right)$	M1	
	$= P\left(X \ge \frac{1}{y}\right)$	A1	
	$=\frac{b-\frac{1}{y}}{b-a}$		

Ques	Solution	Mark	Notes
(iii)	PDF = derivative of above line 1	M1	
	$=\frac{1}{(b-a)y^2}$	A1	

GCE Maths (S2) MS Summer 2017